Synthesis 2023; 55(15): 2406-2414
DOI: 10.1055/a-2004-1093
paper
Special Issue dedicated to Prof. David A. Evans

Efficient Synthesis and Functionalization of 3-Bromonaphtho[2,3-b]thiophene

Emily K. Burke
a   Dalhousie University, Chemistry Department, 6274 Coburg Road, Halifax, NS, B3H 4R2, Canada
,
Erin N. Welsh
a   Dalhousie University, Chemistry Department, 6274 Coburg Road, Halifax, NS, B3H 4R2, Canada
,
Katherine N. Robertson
b   Saint Mary’s University, Department of Chemistry, 923 Robie Street, Halifax, NS, B3H 3C3, Canada
,
a   Dalhousie University, Chemistry Department, 6274 Coburg Road, Halifax, NS, B3H 4R2, Canada
› Author Affiliations
This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) through a Discovery Grant (2017-04297), an Idea to Innovation Grant (I2IPJ 523283-18), and the CREATE­ Training Program in BioActives (510963). Newfoundland and Labrador (Labrador’s Post-Secondary Student Support Program) and the Nova Scotia Graduate Scholarship are thanked for graduate funding to E.N.W.


Abstract

Naphtho[2,3-b]thiophene is a linear sulfur-containing polycyclic aromatic hydrocarbon. Naphtho[2,3-b]thiophene and its derivatives are commonly accessed by a Bradsher cyclization. Synthesis of the Bradsher cyclization substrate typically requires harsh conditions, including several oxidation state changes. Here, we report an improved, multigram synthesis of 3-bromonaphtho[2,3-b]thiophene, exploiting a copper-catalyzed cross-coupling to prepare the Bradsher substrate in three steps from commercial materials while minimizing redox reactions. In this work, the 3-bromonaphthothiophene is further functionalized via lithium–halogen exchange, with the key finding being a specific order of addition in lithiation is required to avoid undesired rearrangement reactions. Transformation to a versatile set of derivatives, including a naphthothiophene-containing chiral amine, is illustrated.

Supporting Information



Publication History

Received: 16 November 2022

Accepted after revision: 26 December 2022

Accepted Manuscript online:
26 December 2022

Article published online:
25 January 2023

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Yamashita T. JP2010053094A, 2010
    • 1b Mamada M, Katagiri H, Mizukami M, Honda K, Minamiki T, Teraoka R, Uemura T, Tokito S. ACS Appl. Mater. Interfaces 2013; 5: 9670
    • 2a Das BP, Cunningham RT, Boykin DW. J. Med. Chem. 1973; 16: 1361
    • 2b Basoglu A, Dirkmann S, Zahedi Golpayegani N, Vortherms S, Tentrop J, Nowottnik D, Prinz H, Fröhlich R, Müller K. Eur. J. Med. Chem. 2017; 134: 119
    • 3a Carruthers W, Crowder JR. J. Chem. Soc. 1957; 1932
    • 3b Carruthers W, Douglas AG, Hill J. J. Chem. Soc. 1962; 704
  • 4 Carruthers W. J. Chem. Soc. 1963; 4477
  • 5 MacDowell DW. H, Wisowaty JC. J. Org. Chem. 1971; 36: 3999
  • 6 Tedjamulia ML, Tominaga Y, Castle RN, Lee ML. J. Heterocycl. Chem. 1983; 20: 1143
    • 7a Bradsher CK. J. Am. Chem. Soc. 1940; 62: 486
    • 7b Bradsher CK. Chem. Rev. 1987; 87: 1277
    • 7c Bodzioch A, Kowalska E, Skalik J, Bałczewski P. Chem. Heterocycl. Compd. 2017; 53: 11
  • 8 Rafiq SM, Sivasakthikumaran R, Karunakaran J, Mohanakrishnan AK. Eur. J. Org. Chem. 2015; 5099
  • 9 Rafiq SM, Mohanakrishnan AK. Synlett 2017; 28: 362
  • 10 Dhayalan V, Mohanakrishnan AK. Synth. Commun. 2012; 42: 2149
  • 11 Li L, Ndzeidze GN, Steinmetz MG. Tetrahedron 2019; 75: 70
  • 12 Messersmith RE, Siegler MA, Tovar JD. Synlett 2018; 29: 2499
  • 13 Yue D, Larock RC. J. Org. Chem. 2002; 67: 1905
  • 14 Niimi K, Miyazaki E, Osaka I, Takimiya K. Synthesis 2012; 44: 2102
  • 15 Bałczewski P, Koprowski M, Bodzioch A, Marciniak B, Różycka-Sokołowska E. J. Org. Chem. 2006; 71: 2899
  • 16 Vingiello FA, Quo S.-G, Sheridan J. J. Org. Chem. 1961; 26: 3202
  • 17 Leolukman M, Paoprasert P, Wang Y, Makhija V, McGee DJ, Gopalan P. Macromolecules 2008; 41: 4651
  • 18 Tamura M, Kochi JK. J. Organomet. Chem. 1972; 42: 205
  • 19 CCDC 1958922 (2a), CCDC 2116338 (2e), CCDC 1999813 (11a), CCDC 1999814 (11b), CCDC 1999812 (14a), and CCDC 1999815 (14b) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 20 Brian PT, Musau P. Indones. J. Chem. 2016; 16: 53
  • 21 Zaneti JE, Bashour JT. J. Am. Chem. Soc. 1939; 61: 2249
  • 22 Taimoory SM, Sadraei SI, Fayoumi RA, Nasri S, Revington M, Trant JF. J. Org. Chem. 2018; 83: 4427
  • 23 Reference 21 was pointed out to us by a helpful reviewer, after we had completed experimental work on this project. That work pointed out 2-(bromomethyl)furan is stable and usable in ethereal solution, without concentration. It is likely 2-(bromomethyl)thiophene (10a) could also be more safely used in this manner, providing provisions for removal of HBr before the Grignard alkylation step were made.
  • 24 Li Z, Zhang J, Zhang W, Guo L, Huang J, Yu G, Wong MS. Org. Electron. 2016; 32: 1566
  • 25 Nakagawa H, Kawai S, Nakashima T, Kawai T. Org. Lett. 2009; 11: 1475
  • 26 Dickinson RP, Iddon B. J. Chem. Soc. C 1970; 2592
    • 27a Wu X, Chen T.-A, Zhu L, Rieke RD. Tetrahedron Lett. 1994; 35: 3673
    • 27b Sonoda M, Kinoshita S, Luu T, Fukuda H, Miki K, Umeda R, Tobe Y. Synth. Commun. 2009; 39: 3315
  • 28 Warren GI, Barker JE, Zakharov LN, Haley MM. Org. Lett. 2021; 23: 5012
  • 29 Liu G, Cogan DA, Ellman JA. J. Am. Chem. Soc. 1997; 119: 9913
  • 30 Ishida T, Kobayashi R, Yamada T. Org. Lett. 2014; 16: 2430
  • 31 Welsh EN, Robertson KN, Speed AW. H. Org. Biomol. Chem. 2021; 19: 2000
  • 32 Preliminary aspects of this work, including the preparation of 2a, 2d, 11a, and 11c, have been reported: Welsh EN, Burke EK, Robertson KN, Speed AW. H. ChemRxiv 2019; preprint; DOI: 10.26434/chemrxiv.9917969.v1.
  • 33 Zhang C, Wang C, Dalton LR, Zhang H, Steier WH. Macromolecules 2001; 34: 253